Classifications and volume bounds of lattice polytopes

نویسنده

  • Gabriele Balletti
چکیده

In this licentiate thesis we study relations among invariants of lattice polytopes, with particular focus on bounds for the volume. In the first paper we give an upper bound on the volume vol(P∗) of a polytope P∗ dual to a d-dimensional lattice polytope P with exactly one interior lattice point, in each dimension d . This bound, expressed in terms of the Sylvester sequence, is sharp, and is achieved by the dual to a particular reflexive simplex. Our result implies a sharp upper bound on the volume of a d-dimensional reflexive polytope. In the second paper we classify the three-dimensional lattice polytopes with two lattice points in their strict interior. Up to unimodular equivalence there are 22,673,449 such polytopes. This classification allows us to verify, for this case only, the sharp conjectural upper bound for the volume of a lattice polytope with interior points, and provides strong evidence for more general new inequalities on the coefficients of the h∗-polynomial in dimension three.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on lattice points of zonotopes and lattice-face polytopes

Minkowski’s second theorem on successive minima gives an upper bound on the volume of a convex body in terms of its successive minima. We study the problem to generalize Minkowski’s bound by replacing the volume by the lattice point enumerator of a convex body. To this we are interested in bounds on the coefficients of Ehrhart polynomials of lattice polytopes via the successive minima. Our resu...

متن کامل

An Upper Bound Theorem concerning lattice polytopes

R. P. Stanley proved the Upper Bound Conjecture in 1975. We imitate his proof for the Ehrhart rings. We give some upper bounds for the volume of integrally closed lattice polytopes. We derive some inequalities for the delta-vector of integrally closed lattice polytopes. Finally we apply our results for reflexive integrally closed and order polytopes.

متن کامل

Lower bounds on the coefficients of Ehrhart polynomials

We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. We also introduce two formulas for calculating the Ehrhart series of a kind of a ”weak” free sum of two lattice polytopes and of integral dilates of a polytope. As an application of these formulas we show that Hibi’s lower bound on the coefficients of the Ehrhart series is n...

متن کامل

Linear Programming, the Simplex Algorithm and Simple Polytopes

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

متن کامل

Lattice-Free Polytopes and Their Diameter

A convex polytope in real Euclidean space is lattice-free if it intersects some lattice in space exactly in its vertex set. Lattice-free polytopes form a large and computationally hard class, and arise in many combinatorial and algorithmic contexts. In this article, aane and combinatorial properties of such polytopes are studied. First, bounds on some invariants, such as the diameter and layer-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016